中文版 | English
题名

Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion

作者
通讯作者Zhang,Dongxiao
发表日期
2023
DOI
发表期刊
ISSN
2096-5168
EISSN
2639-5274
卷号6
摘要
Data-driven discovery of partial differential equations (PDEs) has recently made tremendous progress, and many canonical PDEs have been discovered successfully for proof of concept. However, determining the most proper PDE without prior references remains challenging in terms of practical applications. In this work, a physics-informed information criterion (PIC) is proposed to measure the parsimony and precision of the discovered PDE synthetically. The proposed PIC achieves satisfactory robustness to highly noisy and sparse data on 7 canonical PDEs from different physical scenes, which confirms its ability to handle difficult situations. The PIC is also employed to discover unrevealed macroscale governing equations from microscopic simulation data in an actual physical scene. The results show that the discovered macroscale PDE is precise and parsimonious and satisfies underlying symmetries, which facilitates understanding and simulation of the physical process. The proposition of the PIC enables practical applications of PDE discovery in discovering unrevealed governing equations in broader physical scenes.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Sciences[ZDSYS20200421111201738];
EI入藏号
20232614320013
Scopus记录号
2-s2.0-85163378884
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/560262
专题深圳国家应用数学中心
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.Institute of Applied Physics and Computational Mathematics,Beijing,100088,China
3.Eastern Institute for Advanced Study,Eastern Institute of Technology,Ningbo,Zhejiang,315200,China
4.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
5.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,Guangdong,518000,China
通讯作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Xu,Hao,Zeng,Junsheng,Zhang,Dongxiao. Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion[J]. Research,2023,6.
APA
Xu,Hao,Zeng,Junsheng,&Zhang,Dongxiao.(2023).Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion.Research,6.
MLA
Xu,Hao,et al."Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion".Research 6(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Hao]的文章
[Zeng,Junsheng]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Xu,Hao]的文章
[Zeng,Junsheng]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Xu,Hao]的文章
[Zeng,Junsheng]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map