中文版 | English
题名

A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs

作者
通讯作者Zhang,Dongxiao
发表日期
2023-04-01
DOI
发表期刊
ISSN
0360-5442
EISSN
1873-6785
卷号268
摘要
Accurate forecasts of photovoltaic power (PVP) are essential to the production, transmission, and distribution of electricity in power systems. However, PVP output is strongly weather-dependent, and the forecasting of PVP is highly dependent on the quality of numerical weather prediction (NWP) data. In recent years, a huge volume of numerical weather observation (NWO) data which are strongly associated with PVP output have been collected on-site by widely-installed smart meters and sensors. Appropriately utilizing high-fidelity NWO, in addition to low-fidelity NWP, has great potential in promoting the forecasting capability of deep learning (DL) models. Therefore, this paper proposes a cascaded multi-fidelity deep learning (CMF-DL) framework, which is coordinately driven by the data of both NWO and NWP, to deal with the day-ahead PVP forecasting problem. The proposed CMF-DL framework possesses great compatibility, and thus it can be incorporated with various DL models, such as the long short-term memory (LSTM) model and the gated recurrent unit (GRU) model. Subsequently, incorporated with CMF-DL, two newly-developed forecasting models, i.e., CMF-LSTM and CMF-GRU, are proposed, and datasets from a real-life PV plant are utilized, to evaluate the feasibility and effectiveness of the proposed approaches. From the results, the proposed CMF-LSTM and CMF-GRU show greater forecasting capability and anti-noise ability than the basic LSTM and GRU. Both CMF-LSTM and CMF-GRU can accept noisy NWP data with up to 35% errors. Additionally, compared to the persistence model, the forecasting skills of CMF-LSTM and CMF-GRU can be significantly promoted by 39.87% and 44.02%, respectively. The proposed CMF-LSTM and CMF-GRU also achieve better day-ahead PVP forecasting performance than the widely-used reference models in previous works.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Thermodynamics ; Energy & Fuels
WOS类目
Thermodynamics ; Energy & Fuels
WOS记录号
WOS:000993981500001
出版者
EI入藏号
20230213381166
EI主题词
Electric power transmission ; Power quality ; Weather forecasting
EI分类号
Meteorology:443 ; Electric Power Transmission:706.1.1 ; Electric Power Distribution:706.1.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85146070151
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/442604
专题深圳国家应用数学中心
作者单位
1.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,Guangdong,518055,China
2.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
通讯作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Luo,Xing,Zhang,Dongxiao. A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs[J]. ENERGY,2023,268.
APA
Luo,Xing,&Zhang,Dongxiao.(2023).A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs.ENERGY,268.
MLA
Luo,Xing,et al."A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs".ENERGY 268(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map