中文版 | English
题名

Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method

作者
通讯作者Zhang,Dongxiao
发表日期
2021-11-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号445
摘要

Machine learning models have been successfully used in many scientific and engineering fields. However, it remains difficult for a model to simultaneously utilize domain knowledge and experimental observation data. The application of knowledge-based symbolic artificial intelligence (AI) represented by expert systems is limited by the expressive ability of the model, and data-driven connectionism AI represented by neural networks is prone to produce predictions that might violate physical principles. In order to fully integrate domain knowledge with observations and make full use of the strong fitting ability of neural networks, this study proposes theory-guided hard constraint projection (HCP). This deep learning model converts physical constraints, such as governing equations, into a form that is easy to handle through discretization, and then implements hard constraint optimization through projection in a patch. Based on rigorous mathematical proofs, theory-guided HCP can ensure that model predictions strictly conform to physical mechanisms in the constraint patch. The training process of theory-guided HCP only needs a small amount of labeled data (sparse observation), and it can supervise the model by combining the coordinates (label-free data) with domain knowledge. The performance of the theory-guided HCP is verified by experiments based on a published heterogeneous subsurface flow problem. The experiments show that theory-guided HCP requires fewer data, and achieves higher prediction accuracy and stronger robustness to noisy observations, than the fully connected neural networks and soft constraint models. Furthermore, due to the application of domain knowledge, theory-guided HCP possesses the ability to extrapolate and can accurately predict points outside of the range of the training dataset.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000696503300013
EI入藏号
20213410813978
EI主题词
Constrained optimization ; Deep learning ; Expert systems ; Forecasting ; Neural networks
EI分类号
Expert Systems:723.4.1 ; Systems Science:961
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85113300869
来源库
Scopus
引用统计
被引频次[WOS]:46
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/245250
专题工学院_环境科学与工程学院
作者单位
1.Intelligent Energy Laboratory,Frontier Research Center,Peng Cheng Laboratory,Shenzhen,518000,China
2.Center for Spatial Information Science,The University of Tokyo,277-8568,Japan
3.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.BIC-ESAT,ERE,SKLTCS,College of Engineering,Peking University,Beijing,100871,China
5.Future Energy Center,Malardalen University,Vasteras,721 23,Sweden
6.LocationMind Inc.,Tokyo,101-0032,Japan
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Chen,Yuntian,Huang,Dou,Zhang,Dongxiao,et al. Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2021,445.
APA
Chen,Yuntian.,Huang,Dou.,Zhang,Dongxiao.,Zeng,Junsheng.,Wang,Nanzhe.,...&Yan,Jinyue.(2021).Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method.JOURNAL OF COMPUTATIONAL PHYSICS,445.
MLA
Chen,Yuntian,et al."Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method".JOURNAL OF COMPUTATIONAL PHYSICS 445(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yuntian]的文章
[Huang,Dou]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Chen,Yuntian]的文章
[Huang,Dou]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Chen,Yuntian]的文章
[Huang,Dou]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map